import csv from io import StringIO from os.path import splitext from .filters import is_in_christchurch, is_in_auckland from .models import EcologicalDistrictLayer, SoilOrder, Questionnaire, ActivationKey from .wms_utils import get_address_from_coordinates import pdfkit import pandas as pd from PyPDF2 import PdfFileMerger from django.core.files.storage import get_storage_class Storage = get_storage_class() storage = Storage() CSV_FILENAME = 'plants.csv' PLANTING_GUIDE_PDF_FILENAME = 'planting_guide.pdf' HEADER_FIELDS = ['Names', 'Growth Form / Max Height (m) / Spacing (m) / Forest Position', 'Moisture Preferences', 'Tolerances (Water / Drought / Frost / Salinity)', 'Ecosystem Services', 'Carbon Sequestration Rate', 'Planting Stage'] def get_location_filters(questionnaire): """ Retrives the selected location data from the request. """ filter_rows = [['LOCATION FILTERS:', ' ']] eco_district_layer = EcologicalDistrictLayer.objects.filter(geom__intersects=questionnaire.location).first() address = get_address_from_coordinates(questionnaire.location) filter_rows.append(['Point coordinates:', questionnaire.location]) filter_rows.append(['Ecological region:', eco_district_layer.ecologic_1 or '' ]) filter_rows.append(['Ecological district:', eco_district_layer.ecologic_2 or ' ']) filter_rows.append(['Property address:', address['full_address'] if address is not None else ' ']) return filter_rows def get_soil_filters(questionnaire): """ Retrives the selected soil type data from the request params. """ filter_rows = [['SOIL FILTERS:', ' ']] soil_order = SoilOrder.objects.filter(soillayer__geom__intersects=questionnaire.location).first() filter_rows.append(['Soil Order:', f"{soil_order.name or ' '} ({soil_order.code or ' '})"]) filter_rows.append(['Soil Variant:', questionnaire.soil_variant]) return filter_rows def get_site_filters(questionnaire): """ Retrives the selected site data from the request params """ filter_rows = [['SITE FILTERS:', ' ']] zone = questionnaire.zone habitat = zone.habitat filter_rows.append(['Habitat:', habitat.name]) filter_rows.append(['Zone Name:', zone.name]) filter_rows.append(['Zone Variant:', zone.variant]) filter_rows.append(['Zone Refined Variant:', zone.refined_variant]) return filter_rows def get_additional_region_info(questionnaire): """ If the location coordinates fall within the CHCH or Auckland regions then return a description of where to find more information. """ if is_in_christchurch(questionnaire.location): return [["Your location falls within the ecosystem type covered by the Christchurch Council ecosystem maps - further information can be obtained from Ōtautahi/Christchurch ecosystems map link to: https://ccc.govt.nz/environment/land/ecosystem-map", " "], [' ', ' ']] elif is_in_auckland(questionnaire.location): return [["Your location falls within the ecosystem type covered by the Auckland Council Tiaki Tāmaki Makaurau Conservation map - further information can be obtained from tiaki Tāmaki Makaurau conservation Auckland - link to https://www.tiakitamakimakaurau.nz/conservation-map/", " "], [' ', ' ']] return [] def get_filter_values(params): """ Retrives all selected values/filters from the request parameters """ filter_rows = [] try: ak = ActivationKey.objects.get(key=params.get("key", "")) q = Questionnaire.objects.get(key=ak) except (ActivationKey.DoesNotExist, Questionnaire.DoesNotExist): return filter_rows # Add all the location filters filter_rows += get_location_filters(q) filter_rows.append([' ', ' ']) # Add the soil filters filter_rows += get_soil_filters(q) filter_rows.append([' ', ' ']) # Add the project site filters filter_rows += get_site_filters(q) filter_rows.append([' ', ' ']) filter_rows += get_additional_region_info(q) return filter_rows def generate_csv(data: list[list[str]], output_filename: str) -> str: with storage.open(output_filename, 'w') as f: csv.writer(f).writerows(data) return storage.path(output_filename) def generate_pdf(data: list[list[str]], output_filename: str): """ Generates a pdf from a csv given data and a csv generation method. Requires an html file to be generated as an intermediate step. """ name, _ = splitext(output_filename) csv_filepath = generate_csv(data, f"{name}.csv") pdf_filepath = storage.path(output_filename) with StringIO() as html_buf: # Convert csv to html pd.read_csv(csv_filepath).to_html(html_buf) # reading from buffer causes segfault :/ html_buf.seek(0) # Convert html to pdf pdfkit.from_file(html_buf, pdf_filepath) return pdf_filepath def merge_pdfs(pdfs: list[str], output_filename): """Merge a list of PDF filenames""" output_filepath = storage.path(output_filename) merger = PdfFileMerger() for pdf in pdfs: merger.append(pdf) merger.write(output_filepath) merger.close() return output_filepath def serialize_plants_queryset(plants_queryset): return [HEADER_FIELDS] + [ [ plant.display_name, plant.display_growth_form, plant.moisture_preferences, plant.plant_tolerances, plant.ecosystem_services, plant.carbon_sequestration, plant.stage ] for plant in plants_queryset ] def create_planting_guide_pdf(filter_data, plant_data, output_filename): """ Creates a planting guide pdf document with a pre-generated planting guide with filter and plant list tabular informtation appended. """ # TODO: space values appear as NaN... this should be fixed return merge_pdfs( [ storage.path(PLANTING_GUIDE_PDF_FILENAME), generate_pdf(filter_data, f"{output_filename}.filters"), generate_pdf(plant_data, f"{output_filename}.plants"), ], output_filename, )